METROLOGY for HYDROGEN VEHICLES

Air and Nitrogen Testing of Coriolis Flow Meters Designed for Hydrogen Refuelling Stations

Marc MacDonald (NEL)

Flomeko 2019, Lisbon 26 – 28 June

Project Team

AIR LIQUIDE

Aim is to realise a traceability chain for hydrogen in the range typical for refuelling applications in accordance with SAE J2601.

- Pressures up to 875 bar (filling to 350 bar and 700 bar)
- Pre-cooling to -40°C (up to 85°C in receiving vehicle)
- Transient flow as vehicle fills
- Vented quantities?
- Dead volumes?
- Location of flow meter?

No independent flow facilities operate with hydrogen at these conditions!

Other MetroHyVe Papers

Session	Paper	Title	Presenter
Oral Session S2.9	1046	Investigations on Pressure Dependence of Coriolis Mass Flow Meters Used at Hydrogen Refuelling Stations	Oliver Buker
Oral Session S5.5	1015	Design of Gravimetric Primary Standards for Field Testing of Hydrogen Refuelling Stations	Marc de Huu
Oral Session S10.5	1064	Hydrogen Refuelling Station Calibration with a Traceable Gravimetric Standard	Rémy Maury

Tasks

- 1. Identifying and assessing uncertainty sources for hydrogen metering
- 2. Investigate alternative methods for type approval testing using substitute substances to hydrogen
- 3. Investigate the influence of pressure on the mass flow measurement accuracy of CMFs using water
- 4. Develop 4 independent mobile gravimetric standards to deliver traceability to HRS at NWP of 350 and 700 bar
- 5. Develop uncertainty budgets for type approval testing, periodic verifications and gravimetric standards

Tasks

- 1. Identifying and assessing uncertainty sources for hydrogen metering
- 2. Investigate alternative methods for type approval testing using substitute substances to hydrogen
- 3. Investigate the influence of pressure on the mass flow measurement accuracy of CMFs using water
- 4. Develop 4 independent mobile gravimetric standards to deliver traceability to HRS at NWP of 350 and 700 bar
- 5. Develop uncertainty budgets for type approval testing, periodic verifications and gravimetric standards

 Investigate alternative methods for type approval testing using substitute substances to hydrogen

AIM

To investigate whether non-flammable gases can be used to characterise and calibrate mass flow meters used for metering hydrogen

RATIONALE

To provide a safe methodology for flow laboratories to utilise, for type approval processes for instance, instead of using 875 bar hydrogen

At 30 $^{\circ}$ C and 350 bar(a) $\rho_{\rm H_2} \sim 23~{\rm kgm^{-3}}$

At 20° C and 20 bar(a) $\rho_{\rm N_2} \sim 23 \ \rm kgm^{-3}$

At -40° C and 700 bar(a) $\rho_{\rm H_2} \sim 46~{\rm kgm^{-3}}$

At 20° C and 40 bar(a) $\rho_{\rm N_2} \sim 46 \; {\rm kgm^{-3}}$

This work

Testing with nitrogen and air, ambient temperature

Three members of the MetroHyVe Consortium

- NEL 20 and 40 bar
- CESAME 20 and 40 bar
- METAS 20 and 40 bar (up to 86 bar at higher flow rates)

MetroHyVe Stakeholder

KRISS – 10, 20, 30 and 40 bar

Effect of Temperature

METAS nitrogen tests at -40 and 20°C

Effect of Pressure

RISE water tests at 100 and 700 bar (separate paper)

This work

Four flow meters tested

- All Coriolis type, used in hydrogen refuelling stations
- Previously calibrated by manufacturers with water (Q_{min} = 0.2 to 0.5 kg/min)

Laboratory	Meters Tested
NEL	Meter A, B and

METAS Meter A, B
CESAME Meter A, B
KRISS Meter D

Flow Laboratories

NEL CESAME

Flow Laboratories

METROLOGY for HYDROGEN VEHICLES

KRISS

METAS

NEL Meter A

- Offset Approx. -0.5%
- Errors Range -1.26 to -0.09%
- Most Results within ±1%
- Average repeatability ±0.024%

NEL Meter B

- No offset
- Errors Range -3.05 to 0.52%
- Above 0.25 kg/min, most results within $\pm 0.5\%$
- Average repeatability ±0.06%

NEL Meter C

- No offset
- Errors Range -0.54 to 2.89%
- Above 0.25 kg/min, most results within $\pm 0.5\%$
- Average repeatability ±0.065%

Meter C - Mass Flowrate Error Vs. Reference Mass Flow

CESAME Meter A

- Offset Approx. -0.25%
- Errors Range -1.18 to 0.41%
- Most Results within ±1%
- Average repeatability ±0.04%

CESAME Meter B

- Offset Approx. -0.7%
- Errors Range -2.16 to -0.49%
- Average error -1.05%
- Average repeatability $\pm 0.06\%$

METAS Meter A

- Errors Range -1.08 to 8.44%
- Most 20°C results within ±1%
- Influence of temperature only at low flow rates
- Largest errors at -40°C, <0.4 kg/min
- Above 0.4 kg/min, average error -0.8%

METROLOGY for HYDROGEN VEHICLES

METAS Meter B

- Errors Range -1.48 to 3.33%
- All 20°C results within ±1%
- Influence of temperature
 - Positive errors at low flowrates, <0.2 kg/min
 - Negative errors >0.2 kg/min

KRISS Meter D

- Errors Range -3.4 to 1.22%
- Above 0.5 kg/min, most results within ±1%
- No pressure effect observed

Conclusions

- Largest errors occurred at low flow rates
- At medium to high flow rates, errors for most meters were within $\pm 1\%$
- Shows potential for calibration using alternative fluids, each meter previously calibrated by manufacturers using water
- Influence of temperature observed, greater errors and wider spread occurred at -40°C compared to 20°C.
 - Meter A: larger errors (up to 8.44%) at -40°C, but only at low flow rates. No temperature dependence for flow rates ≥ 0.4 kg/min
 - Meter B: Slight temperature dependence for all flow rates, errors up to 3.33%.
 Positive errors at low flow rates and vice versa.
- No pressure effect observed at 10 to 86 bar
- Pressure effect is separately investigated using water (RISE paper)

THANK YOU

